Part Number Hot Search : 
MJW16110 CPC1330 1N4295A 74HC154N DZ10B 1345T STG512 1D850
Product Description
Full Text Search
 

To Download MWE6IC9100NR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor Technical Data
Document Number: MWE6IC9100N Rev. 2, 6/2007
RF LDMOS Wideband Integrated Power Amplifiers
The MWE6IC9100N wideband integrated circuit is designed with on - chip matching that makes it usable from 869 to 960 MHz. This multi - stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations. Final Application * Typical GSM Performance: VDD = 26 Volts, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 Watts CW, Full Frequency Band (869 - 960 MHz) Power Gain -- 33.5 dB Power Added Efficiency -- 54% GSM EDGE Application * Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 = 870 mA, Pout = 50 Watts Avg., Full Frequency Band (869 - 960 MHz) Power Gain -- 35.5 dB Power Added Efficiency -- 39% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 81 dBc EVM -- 2% rms * Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive, Designed for Enhanced Ruggedness * Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 0 to 50.8 dBm CW (or 1 mW to 120 W CW) Pout. Features * Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters * On - Chip Matching (50 Ohm Input, DC Blocked) * Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) * Integrated ESD Protection * 200C Capable Plastic Package * RoHS Compliant * In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
960 MHz, 100 W, 26 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS
CASE 1618 - 01 TO - 270 WB - 14 PLASTIC MWE6IC9100NR1
CASE 1621 - 01 TO - 270 WB - 14 GULL PLASTIC MWE6IC9100GNR1
CASE 1617 - 01 TO - 272 WB - 14 PLASTIC MWE6IC9100NBR1
VDS1 RFin RFout/VDS2
VGS1 VGS2 VDS1
Quiescent Current Temperature Compensation (1)
NC VDS1 NC NC NC RFin RFin NC VGS1 VGS2 VDS1 NC
1 2 3 4 5 6 7 8 9 10 11 12
14
RFout /VDS2
13
RFout /VDS2
(Top View) Note: Exposed backside of the package is the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
(c) Freescale Semiconductor, Inc., 2007. All rights reserved.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 1
RF Device Data Freescale Semiconductor
Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Storage Temperature Range Operating Junction Temperature Symbol VDSS VGS Tstg TJ Value - 0.5, +66 - 0.5, +6 - 65 to +200 200 Unit Vdc Vdc C C
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case GSM Application (Pout = 100 W CW) GSM EDGE Application (Pout = 50 W Avg.) Stage 1, 26 Vdc, IDQ1 = 120 mA Stage 2, 26 Vdc, IDQ2 = 950 mA Stage 1, 28 Vdc, IDQ1 = 230 mA Stage 2, 28 Vdc, IDQ2 = 870 mA Symbol RJC 1.82 0.38 1.77 0.44 Value (1,2) Unit C/W
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 2 (Minimum) B (Minimum) III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit C
Table 5. Electrical Characteristics (TC = 25C unless otherwise noted)
Characteristic Stage 1 -- Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 1 -- On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 35 Adc) Gate Quiescent Voltage (VDS = 26 Vdc, ID = 120 mAdc) Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test) VGS(th) VGS(Q) VGG(Q) 1.5 -- 6 2 2.7 9.4 3.5 -- 12 Vdc Vdc Vdc IDSS IDSS IGSS -- -- -- -- -- -- 10 1 10 Adc Adc Adc Symbol Min Typ Max Unit
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. 2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. (continued)
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 2 RF Device Data Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25C unless otherwise noted) (continued)
Characteristic Stage 2 -- Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 2 -- On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 290 Adc) Gate Quiescent Voltage (VDS = 26 Vdc, ID = 950 mAdc) Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Power Gain Input Return Loss Power Added Efficiency Pout @ 1 dB Compression Point, CW VGS(th) VGS(Q) VGG(Q) VDS(on) 1.5 -- 6 0.05 2 2.7 8.6 0.4 3.5 -- 12 0.8 Vdc Vdc Vdc Vdc IDSS IDSS IGSS -- -- -- -- -- -- 10 1 10 Adc Adc Adc Symbol Min Typ Max Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W CW, IDQ1 = 120 mA, IDQ2 = 950 mA, f = 960 MHz Gps IRL PAE P1dB 31 -- 52 100 33.5 - 15 54 112 36 - 10 -- -- dB dB % W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 50 W Avg., IDQ1 = 230 mA, IDQ2 = 870 mA, 869-894 MHz and 920-960 MHz EDGE Modulation Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 -- -- -- -- -- 35.5 39 2 - 63 - 81 -- -- -- -- -- dB % % rms dBc dBc
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 3
C8 1 NC + C17 RF INPUT Z2 Z1 VGG1 R1 C15 VGG2 R2 C16 C19 C14 C12 C10 C24 C21 C13 Z3 Z4 C22 C11 2 3 NC 4 NC 5 NC 6 7 8 NC 9 10 11 12 NC Quiescent Current Temperature Compensation 14 C2 Z17 C4 13 Z5 C1 Z6 Z16 Z7 Z8 C3 Z9 C5 Z10 DUT + C7 C20
VDD2
VDD1
C23
Z14
Z15
RF OUTPUT
C6 Z11 Z13
C9
Z12
C18 VDD1 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.089 0.157 0.157 0.139 0.024 0.352 0.039 0.555 0.343 x 0.083 Microstrip x 0.315 Microstrip x 0.397 Microstrip x 0.060 Microstrip x 0.386 Microstrip x 0.902 Microstrip x 0.607 Microstrip x 1.102 Microstrip x 0.083 Microstrip Z10 Z11 Z12 Z13 Z14 Z15 Z16, Z17 PCB 1.117 x 0.083 Microstrip 0.067 x 0.431 Microstrip 0.067 x 0.084 Microstrip 0.381 x 0.067 Microstrip 0.418 x 0.084 Microstrip 0.421 x 0.084 Microstrip 2.550 x 0.157 Microstrip Taconic TLX8 - 0300, 0.030, r = 2.55
Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part C1, C2 C3, C4, C5 C6 C7, C8, C9, C10, C11, C12, C13, C14 C15, C16, C17, C18, C19, C20, C21 C22, C23 C24 R1, R2 Description 10 pF Chip Capacitors 3.9 pF Chip Capacitors 0.5 pF Chip Capacitor 33 pF Chip Capacitors 6.8 F Chip Capacitors 470 F, 63 V Electrolytic Capacitors, Radial 330 pF Chip Capacitor 4.7 k, 1/8 W Chip Resistors Part Number ATC100B100GT500XT ATC100B3R9BT500XT ATC100B0R5BT500XT ATC100B330JT500XT C4532X5R1H685MT 222212018470 ATC100B331JT200XT WCR08054K7G Manufacturer ATC ATC ATC ATC TDK Vishay ATC Welwyn
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 4 RF Device Data Freescale Semiconductor
MWE6IC9100N Rev. 4 C17
VDD1
C7 C8 C22 C20 C11 C1 C3 C5 CUT OUT AREA C4 C2 C13 VGG1 C15 R1 C19 C16 VGG2 C10 C9 C18 R2 C14 C12 C6
VDD2
C23
C21 C24
Figure 4. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Layout
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS
38 34 Gps, POWER GAIN (dB) 30 26 22 18 14 10 840 860 880 900 920 940 960 980 f, FREQUENCY (MHz) VDD = 26 Vdc, Pout = 100 W CW IDQ1 = 120 mA, IDQ2 = 950 mA Gps 70 PAE, POWER ADDED EFFICIENCY (%) 64 58 PAE 52 46 40 34 28 0 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) VDD = 26 Vdc f = 945 MHz 100 200 -4 -8 -12 -16 -20 -24 -28
IRL
Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW
38 34 Gps, POWER GAIN (dB) 30 26 22 IRL 18 14 10 840 860 880 900 920 940 960 980 f, FREQUENCY (MHz) 22 16 10 VDD = 28 Vdc, Pout = 50 W Avg. IDQ1 = 230 mA, IDQ2 = 870 mA PAE Gps 52 PAE, POWER ADDED EFFICIENCY (%) 10 Pout, OUTPUT POWER (WATTS) CW 46 40 34 28 -4 -8 -12 -16 -20 -24 -28 -30
Figure 6. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 50 Watts Avg.
36 IDQ2 = 1420 mA IDQ2 = 1190 mA 36 IDQ1 = 150 mA 35 Gps, POWER GAIN (dB) IDQ2 = 950 mA 34 IDQ1 = 120 mA 33 32 31 IDQ1 = 60 mA 30 1 10 Pout, OUTPUT POWER (WATTS) CW 100 200 1 IDQ1 = 90 mA IDQ1 = 180 mA
35 Gps, POWER GAIN (dB)
34
33 IDQ2 = 590 mA 32 IDQ2 = 470 mA 31 VDD = 26 Vdc f = 945 MHz
Figure 7. Power Gain versus Output Power @ IDQ1 = 120 mA
Figure 8. Power Gain versus Output Power @ IDQ2 = 950 mA
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 6 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) -10 -20 -30 -40 5th Order -50 -60 -70 -80 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 7th Order VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA f1 = 945 MHz, f2 = 945.1 MHz 100 kHz Tone Spacing -10 -20 -30 -40 5th Order -50 -60 -70 -80 0.1 1 10 100 TWO -TONE SPACING (MHz) 7th Order VDD = 26 Vdc, Pout = 100 W (PEP), IDQ1 = 150 mA IDQ2 = 1 A, Two -Tone Measurements (f1 + f2)/2 = Center Frequency of 945 MHz 3rd Order
3rd Order
Figure 9. Intermodulation Distortion Products versus Output Power
58 57 Pout, OUTPUT POWER (dBc) 56 55 54 53 52 51 50 49 48 14 15 16 17 Actual VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA Pulsed CW, 12 sec(on), 1% Duty Cycle f = 945 MHz 18 19 20 21 22 23 24 25 P1dB = 50.9 dBm (123 W) P6dB = 51.95 dBm (156 W) P3dB = 51.5 dBm (140 W) Ideal 36 Gps, POWER GAIN (dB) 34 32 Gps 38
Figure 10. Intermodulation Distortion Products versus Tone Spacing
60 50 40 30 85_C 30 28 26 1 10 PAE VDD = 26 Vdc IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz 100 20 10 0 300 PAE, POWER ADDED EFFICIENCY (%)
TC = -30_C
-30_C 25_C 85_C
25_C
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS) CW
Figure 11. Pulsed CW Output Power versus Input Power
40 38 Gps, POWER GAIN (dB) 36 Gps 34 25_C 32 85_C 30 28 26 1 10 Pout, OUTPUT POWER (WATTS) CW 100 PAE 20 10 0 300 30 VDD = 26 Vdc, IDQ1 = 120 mA IDQ2 = 950 mA, f = 880 MHz TC = -30_C -30_C 25_C 50 85_C 40 70 60 PAE, POWER ADDED EFFICIENCY (%) 34 33 Gps, POWER GAIN (dB) 32 31
Figure 12. Power Gain and Power Added Efficiency versus Output Power @ 945 MHz
32 V 30 24 V 29 VDD = 20 V 28 0 50 100 150 200 Pout, OUTPUT POWER (WATTS) CW IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz
Figure 13. Power Gain and Power Added Efficiency versus Output Power @ 880 MHz
Figure 14. Power Gain versus Output Power
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 7
TYPICAL CHARACTERISTICS
6 EVM, ERROR VECTOR MAGNITUDE (% ms) 5 4 3 55 W Avg. 2 1 0 880 25 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA Pout = 63 W Avg. SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) -50 -55 -60 55 W Avg. -65 -70 -75 SR @ 600 kHz -80 -85 860 880 55 W Avg. 900 920 940 f, FREQUENCY (MHz) 63 W Avg. 960 980 25 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 920 MHz, EDGE Modulation SR @ 400 kHz Pout = 63 W Avg.
25 W Avg.
900
920
940
960
980
f, FREQUENCY (MHz)
Figure 15. EVM versus Frequency
Figure 16. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency
-40 SPECTRAL REGROWTH @ 400 kHz (dBc) -45 -50 -55 -60 TC = -30_C -65 -70 85_C -75 -80 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation 40 60 80 100 120 25_C
-45 SPECTRAL REGROWTH @ 400 kHz (dBc) -50 -55 85_C -60 TC = -30_C -65 -70 -75 -80 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation 25_C
0
20
Pout, OUTPUT POWER (WATTS)
Figure 17. Spectral Regrowth at 400 kHz versus Output Power @ 945 MHz
-60 SPECTRAL REGROWTH @ 600 kHz (dBc) -65 -70 -75 TC = -30_C -80 -85 -90 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) 85_C 25_C VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation SPECTRAL REGROWTH @ 600 kHz (dBc) -50 -55 -60
Figure 18. Spectral Regrowth at 400 kHz versus Output Power @ 880 MHz
VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation 25_C
-65 -70 -75 -80 -85 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) TC = -30_C 85_C
Figure 19. Spectral Regrowth at 600 kHz versus Output Power @ 945 MHz
Figure 20. Spectral Regrowth at 600 kHz versus Output Power @ 880 MHz
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 8 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
EVM, ERROR VECTOR MAGNITUDE (% ms) 10 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 945 MHz 50 PAE, POWER ADDED EFFICIENCY (%) PAE, POWER ADDED EFFICIENCY (%) 25_C 34 32 30 28 26 820 VDD = 26 Vdc, Pout = 60 W CW IDQ1 = 120 mA, IDQ2 = 950 mA 840 860 880 900 920 940 960 980 85_C
8
40
6 PAE 4 85_C
30
20 -30_C 10 EVM 0 100
2 0 1 10
TC = 25_C
Pout, OUTPUT POWER (WATTS) AVG.
Figure 21. EVM and Power Added Efficiency versus Output Power @ 945 MHz
EVM, ERROR VECTOR MAGNITUDE (% ms) 10 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 880 MHz 50
8
40
6 PAE 4 85_C
30
20
2 0 1 10
25_C TC = -30_C
10 EVM 0 100
Pout, OUTPUT POWER (WATTS) AVG.
Figure 22. EVM and Power Added Efficiency versus Output Power @ 880 MHz
40 S21 30 -5 Gps, POWER GAIN (dB) 36 0 38 TC = -30_C
S21 (dB)
10
S11
-15
0 VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA 600 800 1000 1200 1400
-20
-10 400
-25 1600
f, FREQUENCY (MHz)
S11 (dB)
20
-10
f, FREQUENCY (MHz)
Figure 23. Broadband Frequency Response
Figure 24. Power Gain versus Frequency
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 9
TYPICAL CHARACTERISTICS
108
107 MTTF (HOURS)
106 1st Stage 105
2nd Stage
104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 26 Vdc, Pout = 100 W CW, and PAE = 54%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu- lators by product.
Figure 25. MTTF versus Junction Temperature
GSM TEST SIGNAL
-10 -20 -30 -40 -50 (dB) -60 -70 -80 -90 -100 -110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz
Figure 26. EDGE Spectrum
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 10 RF Device Data Freescale Semiconductor
Zo = 50
f = 820 MHz
Zsource f = 980 MHz f = 980 MHz
f = 820 MHz
Zload
VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 W CW f MHz 820 840 860 880 900 920 940 960 980 Zsource W 35.40 + j21.50 35.00 + j18.00 35.00 + j15.50 34.50 + j12.20 34.00 + j9.00 34.30 + j7.20 38.50 + j6.00 42.00 + j7.40 45.55 + j12.75 Zload W 0.516 - j0.365 0.638 - j0.172 0.768 - j0.010 0.874 + j0.071 1.030 + j0.133 1.101 + j0.082 1.088 + j0.037 1.011 + j0.018 0.872 + j0.051
Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network
Input Matching Network
Device Under Test
Z
source
Z
load
Figure 27. Series Equivalent Source and Load Impedance MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 11
Table 7. Common Source Scattering Parameters (VDD = 26 V, 50 ohm system, IDQ1 = 120 mA, IDQ2 = 950 mA)
f MHz 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 S11 |S11| 0.230 0.188 0.149 0.114 0.085 0.063 0.047 0.037 0.031 0.029 0.033 0.041 0.052 0.063 0.074 0.084 0.094 0.104 0.113 0.125 0.141 0.160 0.183 0.209 0.238 0.268 95 93 92 92 96 104 117 134 156 - 177 - 152 - 134 - 123 - 116 - 112 - 109 - 106 - 103 - 99 - 95 - 91 - 88 - 86 - 85 - 85 - 86 |S21| 5.81 6.48 7.18 7.88 8.56 9.22 9.82 10.37 10.85 11.27 11.60 11.87 12.07 12.20 12.25 12.23 12.15 12.01 11.82 11.57 11.28 10.97 10.62 10.23 9.83 9.41 S21 - 87 - 97 - 107 - 117 - 128 - 139 - 150 - 161 - 172 178 167 156 146 135 125 115 106 96 86 77 68 59 50 42 34 26 |S12| 0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0009 0.0009 0.0008 0.0008 0.0007 0.0006 0.0006 0.0006 S12 - 119 - 116 - 111 - 110 - 109 - 108 - 109 - 110 - 111 - 113 - 114 - 117 - 119 - 122 - 123 - 126 - 129 - 131 - 133 - 135 - 138 - 136 - 135 - 133 - 130 - 125 |S22| 0.989 0.987 0.985 0.983 0.981 0.979 0.978 0.978 0.977 0.977 0.978 0.978 0.979 0.979 0.979 0.980 0.979 0.978 0.978 0.977 0.976 0.976 0.976 0.976 0.975 0.975 S22 - 180 180 180 180 180 180 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 180 180 180 180 180 180 180 180 180 180 180 180
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 12 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 13
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 14 RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 15
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 16 RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 17
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 18 RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 19
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 20 RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 21
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process. Application Notes * AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages * AN1949: Mounting Method for the MHVIC910HR2 (PFP - 16) and Similar Surface Mount Packages * AN1955: Thermal Measurement Methodology of RF Power Amplifiers * AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins * EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 1 Date Feb. 2007 May 2007 * Initial Release of Data Sheet * Changed Device box to 960 MHz to reflect functional test frequency, p. 1 * Added Power Added Efficiency to GSM EDGE Application Typical Performances, p. 1 * Changed "5:1 VSWR, @ 28 Vdc" to "10:1 VSWR, @ 32 Vdc" in the Capable of Handling bullet, p. 1 * Added Footnote (1) to Quiescent Current Thermal Tracking bullet under Features section and to Quiescent Current Temperature Compensation in Fig. 1, Functional Block Diagram, p. 1 * Added top - level, 2 - stage block diagram depiction to Fig. 2, Pin Connections; updated Note, p. 1 * Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150C, p. 2 * Added Stage 1 and Stage 2 DC Electrical Characteristics tables, p. 2, 3 * In Table 6, Component Designations and Values, corrected Part Number ATC100B331JT500XT to ATC100B331JT200XT for C24 capacitor, p. 4 * Updated Figs. 7 and 8, Power Gain versus Output Power, to remove non - variable IDQ value, p. 6 * Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to show PEP and not CW; corrected frequency value to show 100 kHz Tone Spacing, p. 7 * Updated graphical representation of Ideal/Actual in Fig. 11, Pulsed CW Output Power versus Input Power, to show correct 3 and 6 dB compression points, p. 7 2 June 2007 * Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts' Operating Junction Temperature is increased to 225C. Description
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 22 RF Device Data Freescale Semiconductor
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) Freescale Semiconductor, Inc. 2007. All rights reserved.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
Document Number: RF Device Data MWE6IC9100N Rev. 2, 6/2007 Freescale Semiconductor
23


▲Up To Search▲   

 
Price & Availability of MWE6IC9100NR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X